Advanced Grad Stats Interaction Effects

Evidence from 12 Latin American Countries

Lab 7 Diego F. Leal www.diegoleal.info

A Dichotomous/Categorical Independent Variable

cons

. reg dependentVar i1.dichotomousVar

Source	SS	df	MS		Nu	mber of obs =	1000
Model Residual	45.6895343 636.946318	1 998	45.68953 .6382227	43 64	F(Pro R-:	1, 998) = ob > F = squared =	71.59 0.0000 0.0669
Total	682.635852	999	.6833191	72	Adj Roj	j R-squared = ot MSE =	0.0660 .79889
dependentVar	Coef.	Std.	Err.	t	₽> t	[95% Conf.	Interval
1.dichotomou~r cons	2.263343	.267	5026	8.46	0.000	1.73841	2.78827

Here a "unit increase" represents switching from one category to another. The coefficient is the average difference in Y between the category for which X = 0 (the reference group) and the category for which X = 1 (the comparison group)

1.271135

A Dichotomous/Categorical Independent Variable

. reg dependentVar i1.dichotomousVar

Source	SS	df M	S	Nur	mber of obs =	= 1000		
				F (1, 998)=	71.59		
Model	45.6895343	1 45.689	5343	Pro	ob≻F =	= 0.0000	Summary statisti	.cs: mean
Residual	636.946318	998 .63822	2764	R-s	squared =	0.0669	by categories	of: dichotomousVar
				Ad	j R-squared =	0.0660		
Total	682.635852	999 .68331	9172	Roc	ot MSE =	.79889	dichotomousVar	depend~r
								.7485708
dependentVar	Coer.	Std. Err.	t	₽> t	[95% Conf.	Intervalj	1	3.011913
1 dishatamayur	2 262242	2675026	0.46	0.000	1 72041	2 700275		
1.dicnotomou~r	2.263343	.2675026	0.40	0.000	1.73841	2.788270	Total	2 991542
_cons	. /485/08	.2662962	2.81	0.005	.2260062	1.2/1135	IUUAI	2.991343

Therefore, compared to the reference group, we would expect people in the comparison group to score 2.26 units higher on the dependent variable, on average.

Additive Model

This is our initial model:

```
E(I) = \alpha + \beta 1 Education + \beta 2 Urban + \epsilon
```

Where,

- I = respondent's wealth
- α = slope
- β 1 = Respondent's education \rightarrow Main effect 1
- $\beta 2 = \text{Respondent's area of residence (urban = 1)} \rightarrow \text{Main effect}$ 2

 $\epsilon = error$

Additive Model: Stata Output, Evidence from Latin America

. xi: svy: reg wea	althIndex	i.urban edu	acation				
i.urban	_Iurban_(0-1	(naturally	coded;	_Iurban_0	omitte	ed)
(running regress (on estimat	tion sample)					
Survey: Linear re	gression						
Number of strata	=	6		Number o	of obs	=	8972
Number of PSUs	=	125		Populati	ion size	=	8972
				Design d	lf	=	119
				F(2,	118)	=	343.34
				Prob > 1	7	=	0.0000

wealthIndex	Coef.	Linearized Std. Err.	t	P≻ t	[95% Conf.	Interval]
_Iurban_1	.2116932	.0138543	15.28	0.000	.1842603	.2391261
education	.029278	.0012547	23.33	0.000	.0267935	.0317624
_cons	1211798	.0121518	-9.97	0.000	1452415	0971181

R-squared

0.3173

=

Model Assumptions

Model assumes the difference in wealth between rural and urban residents is constant across **all** levels of education

Model Assumptions

Model assumes the slope of education is the same for urban and rural residents.

Non-Additive Way of Thinking

Slope line for education could depend on the group (rural vs. urban residents) one is analyzing

Categorical variable as the moderator

Difference in income between urban and rural residents could depend on the amount of education people have

Continuous variable as the moderator

Definition

An interaction exists when the relationship between X and Y changes (in magnitud or direction) when examined at different levels of a third variable

Non-Additive Model

This is our initial model:

 $E(I) = \alpha + \beta 1 Education + \beta 2 Urban +$ β 3 Urban*Education + ε

Where,

- I = respondent's wealth
- α = slope
- $\beta 1 = \text{Respondent's education} \rightarrow \text{conditional effect } 1$
- β 2 = Respondent's area of residence (urban = 1) \rightarrow conditional effect 2
- β 3 = Respondent's area of residence (urban = 1) * respondent's education \rightarrow cross-product term
- $\epsilon = error$

Something to Consider First

. xi: svy: reg wealthIndex education if urban == 0
(running regress on estimation sample)

Survey: Linear regression

	-			-	Wards and the		
Number	OI	strata	=	5	Number of obs	=	2349
Number	of	PSUs	=	70	Population size	=	2349
					Design df	=	65
					F(1, 65)	=	61.47
					Prob > F	=	0.0000
					R-squared	=	0.0737

Rural residents' education effect (slope) = **0.0109**

Rural residents' slope is not as steeper as urban residents' slope

		Linearized				
wealthIndex	Coef.	Std. Err.	t	₽≻ t	[95% Conf.	Interval]
education	.0109204	.0013929	7.84	0.000	.0081386	.0137023
_cons	.0030168	.0086096	0.35	0.727	0141777	.0202113

. xi: svy: reg wealthIndex education if urban == 1
(running regress on estimation sample)

Survey: Linear regression

Number of	strata	=	6	Number of obs	=	6623
Number of 1	PSUs	=	124	Population size	=	6623
				Design df	=	118
				F(1, 118)	=	640.78
				Prob > F	=	0.0000
				R-squared	=	0.2102

wealthIndex	Coef.	Linearized Std. Err.	t	₽> t	[95% Conf.	Interval]
education _cons	.0349324	.00138	25.31 1.99	0.000	.0321996 .0001485	.0376651

Urban residents' education effect (slope) = **0.0349**

Wealth returns to education are

¹⁰² stronger for urban residents

Interpreting the Results

. xi: svy: reg wealthIndex i.urban education urban_education
i.urban __Iurban_0-1 (naturally coded; _Iurban_0 omitted)
(running regress on estimation sample)

Survey: Linear regression

Number of strata	a =	6	Number of obs	=	8972
Number of PSUs	=	125	Population size	=	8972
			Design df	=	119
			F(3, 117)	=	333.75
			Prob > F	=	0.0000
			R-squared	=	0.3352

wealthIndex	Coef.	Linearized Std. Err.	t	₽> t	[95% Conf.	Interval]
_Iurban_1 education	.0306647	.0176263	1.74	0.084	0042373	.0655666
urban_education _cons	.0240119 .0030168	.0019381 .0085909	0.35	0.000	.0201743 0139941	.0278496 .0200277

- Education: effect of education for rural residents (reference group)
- _lurban_1: predicted income gap between rural and urban residents when education is zero in both groups
- **Urban_education**: <u>part</u> of education effect for urban residents

The Math

 $E(Y) = \alpha + \beta 1$ (Education) + $\beta 2$ (Urban) + $\beta 3$ (Urban*Education) + $\epsilon E(I) = .003 + .01$ (Education) + .03 (Urban) + .02 (Urban*Education)

Substitute 1, 2 & 3 as possible values for education and the interaction; and 0 for urban E(I) = .003 + .01 (1) + .03 (0) + .02 (0) = 0.4 E(I) = .003 + .01 (2) + .03 (0) + .02 (0) = 0.5E(I) = .003 + .01 (3) + .03 (0) + .02 (0) = 0.6

The difference between predicted values is (e.g. 0.5 - 0.4) =.01

So, .01 is the change in slope for rural residents \rightarrow increment in wealth for rural risdents for one unit increase in education

The Math

 $E(Y) = \alpha + \beta 1$ (Education) + $\beta 2$ (Urban) + $\beta 3$ (Urban*Education) + $\epsilon E(I) = .003 + .01$ (Education) + .03 (Urban) + .02 (Urban*Education)

Substitude 1, 2 & 3 for education; 1 urban; and 1, 2 & 3 for the interaction

E(I) = .003 + .01 (1) + .03 (1) + .02 (1) = 0.9 E(I) = .003 + .01 (2) + .03 (1) + .02 (2) = 1.2E(I) = .003 + .01 (3) + .03 (1) + .02 (3) = 1.5

The difference between predicted values is (e.g. 1.2 - 0.9) = 0.3

So, .03 is the change in slope for urban residents \rightarrow increment in wealth for urban residents for one unit increase in education

A Graphic Result: Non-Additive vs. Additive

Conclusion

When people have more education, the urban vs. rural gap in wealth is large.

If you live in a rural area, it does not pay that much to get more education (when compared to the situation in urban areas).

Given the size of the coefficients and their signs, a positive coefficient for the interaction means both slopes for area of residence are positive.