Pseudocode of the Simulation Program

Code written by Diego F. Leal (<u>www.diegoleqal.info</u>) Project: Three Essays on Network Dynamics and Liminality, Ph.D. dissertation Sociology department, UMass-Amherst All rights reserved Last updated 2/19/18

FIRST PROCEDURE (Populate Model, Initialize Parameters)

- Select and create a number of agents (**N**)
 - where $\mathbf{N} \in [100,\infty)$ and $\{\mathbf{N} : \mathbf{N} \in (\mathbb{Z}^+)\}$
- Select a level of Consolidation (**C**)
 - where $\mathbf{C} \in [0,1]$ and $\{\mathbf{C} : \mathbf{C} \in (\mathbb{R}^+ \cup [0])\}$
- Select a level of Homophily Bias (**H**)
- where $\mathbf{H} \in [0,1]$ and $\{\mathbf{H} : \mathbf{H} \in (\mathbb{R}^+ \cup [0])\}$
- Select a number of Groups or Communities (G)
 - where $2 \le \mathbf{G} \le \mathbf{x}$ with $\{\mathbf{x} : \mathbf{x} \in [3,\infty) \text{ and } \mathbf{x} \in \mathbb{Z}^+\}$ and $\{\mathbf{G} : \mathbf{G} \in \mathbb{Z}^+\}$
- Select a number of secondary boundaries (**B**)
- where $2 \le \mathbf{B} \le n$ with $\{n : n \in [3,\infty) \text{ and } n \in \mathbb{Z}^+\}$ and $\{\mathbf{B} : \mathbf{B} \in \mathbb{Z}^+\}$.
- Select a margin of error for (**F**)
 - where $\mathbf{F} \in [0.01, 0.05]$ and $\{\mathbf{F} : \mathbf{F} \in (\mathbb{R}^+ \cup [0])\}$
- Select a mean degree (Z)
 - where $\mathbf{Z} \in [4,10]$ and $\{\mathbf{Z} : \mathbf{Z} \in (\mathbb{Z}^+)\}$
- Select a number of iterations (**Q**)
 - where $\mathbf{Q} \in [100,\infty)$ and $\{\mathbf{Q} : \mathbf{Q} \in (\mathbb{Z}^+)\}$
- Select the population mean for the adoption thresholds (T_{mean})
 - where $0 \leq \mathbf{T}_{\text{mean}} \leq 1$ where $\{ \mathbf{T}_{\text{mean}} : \mathbf{T}_{\text{mean}} \in (\mathbb{R}^+ \cup [0]) \}$
- Select the population standard deviation for the adoption thresholds (\mathbf{T}_{sd})
 - where $0 \leq \mathbf{T}_{sd} \leq 1$ where $\{ \mathbf{T}_{sd} : \mathbf{T}_{sd} \in (\mathbb{R}^+ \cup [0]) \}$

SECOND PROCEDURE (Consolidation)

- For agent i to agent **N**:
 - Randomly assign agent i to one, and only one, of the possible values of **G** (i.e. group membership).
 - Call this distribution of agents within groups the primary boundary (**PB**)
- Create **B** copies of **PB**
 - Induce a **C** level of correlation between each **B** and **PB** by partially reshuffling the secondary boundaries
 - Stop if the average pair-wise Pearson correlation coefficient between all the boundaries is equal to C +/- F

THIRD PROCEDURE (Homophily Bias)

- While **Z** has not been reached:
- Ask a randomly selected agent i to:

- Select a social boundary at random (any of the secondary boundaries or the PB can be selected). Call the selected boundary b
- Draw a random number **r** from the unit interval ($\mathbf{r} \in [0,1]$ and { $\mathbf{r} : \mathbf{r} \in (\mathbb{R}^+ \cup [0])$ }
- If-else $\mathbf{r} \leq \mathbf{H}$
 - Create an undirected tie with a random alter j that has the same value (i.e. group membership) in **b**
 - Create an undirected tie with a random an alter j that has a different value (i.e. group membership) in **b**

FOURTH PROCEDURE (Diffusion)

- For agent i to agent **N**:
 - Compute agent's i degree (D_i) intercultural capacity for brokerage (IB_i) , and betweenness centrality (BE_i)
 - Create a variable A_i to indicate if the agent has adopted the innovation. Initially, no agent is an adopter (i.e. $A_i = 0$)
 - Calculate similarity to all other agents in the society using the simple matching coefficient (SMC), see equation 3 in the article.
 - Generate a random number (\mathbf{T}_i) , where $\mathbf{T}_i \sim N (\mathbf{T}_{mean}, \mathbf{T}_{sd})$
- Rank-order agents based on **D**_i, **IB**_i, and **BE**_i. There is one unique ranking per measure.
- Select one of three rules to pick the seed agent: IB, degree, betweenness. or random
- Based on the previous step, select the agent with highest **D**_i or **IB**_i or **BE**_i or select an agent at random. Call the selected agent **seed**.
- Ask agent seed and all her immediate neighbors to become adopters (i.e. A_i = 1). Call this set the seed neighborhood (s)
- Repeat **Q** times:
 - Ask a randomly selected non-adopter (i.e. $\mathbf{A}_i = 0$) agent i to:
 - Randomly select one of her neighbors j
 - Adopt the innovation (i.e. $\mathbf{A}_i = 1$) if j has already adopted the innovation (i.e. $\mathbf{A}_j = 1$) and the similarity to agent j (i.e. SMC_{ij}) is $\geq \mathbf{T}_i$

FIFTH PROCEDURE (Compute Dependent Variables)

• Compute the following quantities:

•
$$\mathbf{A}_{\text{overall}} = \frac{\sum_{i}^{N_{n}}}{N_{i}}$$

•
$$\mathbf{A}_{in} = \frac{\sum_{i}^{N_{ns}} A_i G_{i,seed}}{\sum_{i}^{N_{ns}} G_{i,seed}}$$

•
$$\mathbf{A}_{\text{out}} = \frac{\sum_{i}^{N_{ns}} A_i |G_{i,seed} - 1|}{\sum_{i}^{N_{ns}} |G_{i,seed} - 1|}$$

Where N_{ns} is the set of all agents that are not part of the seed neighborhood, and $G_{i,seed} = 1$ if the i^{th} agent has the same group membership in the primary boundary that the seed agent, 0 otherwise.