Pseudocode of the Simulation Program

Code written by Diego F. Leal (www.diegoleqal.info)
Project: Three Essays on Network Dynamics and Liminality, Ph.D. dissertation
Sociology department, UMass-Amherst
All rights reserved
Last updated 2/19/18

FIRST PROCEDURE (Populate Model, Initialize Parameters)

- Select and create a number of agents (\mathbf{N})
- where $\mathbf{N} \in[100, \infty)$ and $\left\{\mathbf{N}: \mathbf{N} \in\left(\mathbb{Z}^{+}\right)\right\}$
- Select a level of Consolidation (C)
- where $\mathbf{C} \in[0,1]$ and $\left\{\mathbf{C}: \mathbf{C} \in\left(\mathbb{R}^{+} \cup[0]\right)\right\}$
- Select a level of Homophily Bias (H)
- where $\mathbf{H} \in[0,1]$ and $\left\{\mathbf{H}: \mathbf{H} \in\left(\mathbb{R}^{+} \cup[0]\right)\right\}$
- Select a number of Groups or Communities (G)
- where $2 \leq \mathbf{G} \leq \mathrm{x}$ with $\left\{\mathrm{x}: \mathrm{x} \in[3, \infty)\right.$ and $\left.\mathrm{x} \in \mathbb{Z}^{+}\right\}$and $\left\{\mathbf{G}: \mathbf{G} \in \mathbb{Z}^{+}\right\}$
- Select a number of secondary boundaries (B)
- where $2 \leq \mathbf{B} \leq \mathrm{n}$ with $\left\{\mathrm{n}: \mathrm{n} \in[3, \infty)\right.$ and $\left.\mathrm{n} \in \mathbb{Z}^{+}\right\}$and $\left\{\mathbf{B}: \mathbf{B} \in \mathbb{Z}^{+}\right\}$.
- Select a margin of error for (F)
- where $\mathbf{F} \in[0.01,0.05]$ and $\left\{\mathbf{F}: \mathbf{F} \in\left(\mathbb{R}^{+} \cup[0]\right)\right\}$
- Select a mean degree (Z)
- where $\mathbf{Z} \in[4,10]$ and $\left\{\mathbf{Z}: \mathbf{Z} \in\left(\mathbb{Z}^{+}\right)\right\}$
- Select a number of iterations (\mathbf{Q})
- where $\mathbf{Q} \in[100, \infty)$ and $\left\{\mathbf{Q}: \mathbf{Q} \in\left(\mathbb{Z}^{+}\right)\right\}$
- Select the population mean for the adoption thresholds $\left(\mathbf{T}_{\text {mean }}\right)$
- where $0 \leq \mathbf{T}_{\text {mean }} \leq 1$ where $\left\{\mathbf{T}_{\text {mean }}: \mathbf{T}_{\text {mean }} \in\left(\mathbb{R}^{+} \cup[0]\right)\right\}$
- Select the population standard deviation for the adoption thresholds (\mathbf{T}_{sd})
- where $0 \leq \mathbf{T}_{\text {sd }} \leq 1$ where $\left\{\mathbf{T}_{\text {sd }}: \mathbf{T}_{\text {sd }} \in\left(\mathbb{R}^{+} \cup[0]\right)\right\}$

SECOND PROCEDURE (Consolidation)

- For agent i to agent \mathbf{N} :
- Randomly assign agent i to one, and only one, of the possible values of \mathbf{G} (i.e. group membership).
- Call this distribution of agents within groups the primary boundary (PB)
- Create \mathbf{B} copies of $\mathbf{P B}$
- Induce a \mathbf{C} level of correlation between each \mathbf{B} and $\mathbf{P B}$ by partially reshuffling the secondary boundaries
- Stop if the average pair-wise Pearson correlation coefficient between all the boundaries is equal to $\mathbf{C}+/-\mathbf{F}$

THIRD PROCEDURE (Homophily Bias)

- While \mathbf{Z} has not been reached:
- Ask a randomly selected agent i to:
- Select a social boundary at random (any of the secondary boundaries or the $\mathbf{P B}$ can be selected). Call the selected boundary b
- Draw a random number \mathbf{r} from the unit interval $\left(\mathbf{r} \in[0,1]\right.$ and $\left\{\mathbf{r}: \mathbf{r} \in\left(\mathbb{R}^{+} \cup[0]\right)\right\}$
- If-else $\mathbf{r} \leq \mathbf{H}$
- Create an undirected tie with a random alter j that has the same value (i.e. group membership) in \mathbf{b}
- Create an undirected tie with a random an alter j that has a different value (i.e. group membership) in \mathbf{b}

FOURTH PROCEDURE (Diffusion)

- For agent ito agent \mathbf{N} :
- Compute agent's i degree $\left(\mathbf{D}_{\mathbf{i}}\right)$ intercultural capacity for brokerage $\left(\mathbf{I B}_{\mathbf{i}}\right)$, and betweenness centrality ($\mathbf{B E}_{\mathbf{i}}$)
- Create a variable A_{i} to indicate if the agent has adopted the innovation. Initially, no agent is an adopter (i.e. $\mathbf{A}_{\mathrm{i}}=0$)
- Calculate similarity to all other agents in the society using the simple matching coefficient (SMC), see equation 3 in the article.
- Generate a random number (\mathbf{T}_{i}), where $\mathbf{T}_{\mathbf{i}} \sim \mathrm{N}\left(\mathbf{T}_{\text {mean }}, \mathbf{T}_{\text {sd }}\right)$
- Rank-order agents based on $\mathbf{D}_{\mathbf{i}}, \mathbf{I} \mathbf{I B}_{\mathbf{i}}$, and $\mathbf{B E}_{\mathbf{i}}$. There is one unique ranking per measure.
- Select one of three rules to pick the seed agent: IB, degree, betweenness. or random
- Based on the previous step, select the agent with highest $\mathbf{D}_{\mathbf{i}}$ or $\mathbf{I} \mathbf{B}_{\mathbf{i}}$ or $\mathbf{B E} \mathbf{E}_{\mathbf{i}}$ or select an agent at random. Call the selected agent seed.
- Ask agent seed and all her immediate neighbors to become adopters (i.e. $\mathbf{A}_{i}=1$). Call this set the seed neighborhood (s)
- Repeat \mathbf{Q} times:
- Ask a randomly selected non-adopter (i.e. $\mathbf{A}_{i}=0$) agent i to:
- Randomly select one of her neighbors j
- Adopt the innovation (i.e. $\mathbf{A}_{i}=1$) if \mathfrak{j} has already adopted the innovation (i.e. $\mathbf{A}_{j}=1$) and the similarity to agent j (i.e. $\mathrm{SMC}_{\mathrm{ij}}$) is $\geq \mathbf{T}_{\mathbf{i}}$

FIFTH PROCEDURE (Compute Dependent Variables)

- Compute the following quantities:
- $\mathbf{A}_{\text {overall }}=\frac{\sum_{i}^{N n s} A_{i}}{N_{n s}}$
- $\mathbf{A}_{\text {in }}=\frac{\sum_{i}^{N_{n s}} A_{i} G_{i, \text { seed }}}{\sum_{i}^{N n s} G_{i, \text { seed }}}$
- $\mathbf{A}_{\text {out }}=\frac{\left.\sum_{i}^{N_{n s}} A_{i} \mid G_{i, \text { seed }}-1\right) \mid}{\sum_{i}^{\left.N_{n s} \mid G_{i, \text { seed }}-1\right) \mid}}$

Where \mathbf{N}_{ns} is the set of all agents that are not part of the seed neighborhood, and $\mathbf{G}_{\mathrm{i}, \text { seed }}=1$ if the $\mathrm{i}^{\text {th }}$ agent has the same group membership in the primary boundary that the seed agent, 0 otherwise.

