ONLINE APPENDIX A: SIMULATION PROTOCOL

Experiment 1: Investigates $\mu \in \{0, 1, 2, \dots 50\}$, $\alpha \in \{0, 0.02, 0.04, \dots 0.98\}$, and $\lambda \in \{0, 1\}$, with θ distributed uniformly in [0,9] across 10 actors.

Experiment 2: Investigates $\mu \in \{0,1,2,...50\}$ and $\lambda \in \{0,0.02,0.04,...1.0\}$, with θ distributed uniformly in [0,9] across 10 actors. and α distributed uniformly in (0,1) across 10 actors.

BEGIN Loop Over Identical Replications (from 1 to 250)

BEGIN Loop Over Experimental Conditions

Assign parameter values for μ , λ , θ and α , as given in protocol above. Assign initial conditions ($w_i = 0$; $v_i = 0$ for all actors $i \in \{1, 2, 3, ..., 10\}$)

BEGIN Loop Over Iterations (from 1 to 10,000, or until convergence)

Randomize sequence of actors for each new iteration

BEGIN Loop Over Actors *i* in random order

Compute the number of *i*'s peers currently working $n = \sum_{i=1}^{10} w_i, j \neq i$

Compute *i*'s inclination to work (*IW*), given *n*

Compute the normative pressure that *i* experiences (*V*) $V = \sum_{i=1}^{10} v_i$

Actor *i* chooses *Work* ($w_i = 1$) or *Shirk* ($w_i = 0$), given α_i , *IW*, and *V*

Compute expected payoffs for *Promote* and *Oppose*, given θ_i , w_i , and *n*

Actor *i* chooses *Promote* ($v_i = 1$), *Abstain* ($v_i = 0$), or *Oppose* ($v_i = -1$)

RETURN Loop Over Actors

RETURN Loop Over Iterations (cease iterating if no changes for all *v_i* and *w_i*)

Record final response values for Participation, Promotion, and Opposition

RETURN Loop Over Experimental Conditions

RETURN Loop Over Replications

This produces 250 observations of the model's stable behavior (*Participation*, *Promotion*, and *Opposition*) at each unique combination of parameter values.